#### 5.2 - Properties of Rational Exponents and Radicals <sup>1 of 16</sup>

- 1.  $\sqrt{x} = 5$  x = 252.  $\sqrt{2x} = 4$ 3.  $\sqrt{x - 1} = 3$  x = 83.  $\sqrt{x - 1} = 3$ x = 10
- 4.  $\sqrt{x} 7 = 0$  x = 495.  $\sqrt{x} + 6 = 0$ 6.  $2\sqrt{x} - 3 = 1$ *no solution* x = 4

7. 
$$\sqrt[3]{x-3} = 2$$
  
 $x = 11$ 
8.  $\sqrt{x} + \sqrt{x+2} = 0$ 
9.  $\sqrt[3]{x} + 5 = 3$   
*no solution*
 $x = -8$ 

**Graphing Simple Radicals** 

 $f(x) = \sqrt{x}$ 

3 2 \_3 -2 41 0 2 з -1 -2

Graphing Simple Radicals

$$f(x) = \sqrt{x}$$
$$g(x) = \sqrt[3]{x}$$



Graphing Simple Radicals

$$f(x) = \sqrt{x}$$
$$g(x) = \sqrt[3]{x}$$
$$h(x) = \sqrt[4]{x}$$



**Graphing Simple Radicals** 

$$f(x) = \sqrt{x}$$
$$g(x) = \sqrt[3]{x}$$
$$h(x) = \sqrt[4]{x}$$
$$k(x) = \sqrt[5]{x}$$



6 of 16

#### **Graphing Simple Radicals**

$$y = \sqrt{x+1} - 3$$

$$y = \sqrt[3]{x-2} + 3$$



Practice

1. 
$$y = \sqrt{x - 1} + 2$$

2. 
$$y - 2 = \sqrt[3]{x + 3} + 2$$



Find Domain and Range

$$y = \sqrt{x^2 - x} \quad = \sqrt{x(x - 1)}$$

Domain

 $x(x-1) \ge 0$ 

 $x \leq 0 \text{ or } x \geq 1$ 



8 of 16

Range

Max y?  $\infty$ Min y?  $0^{[0,\infty)}$ 

9 of 16

Find Domain and Range - Practice

$$y = \sqrt{x(x^2 - 4)}$$

Domain

$$-2 \le x \le 0 \text{ or } x \ge 2$$

Range

 $[0,\infty)$ 

**Radical Equations** 

$$\sqrt{2x+5} = 2\sqrt{2x} + 1$$
  

$$(\sqrt{2x+5})^2 = (2\sqrt{2x} + 1)^2$$
  

$$2x+5 = 8x + 4\sqrt{2x} + 1$$
  

$$-6x+4 = 4\sqrt{2x}$$
  

$$(-6x+4)^2 = (4\sqrt{2x})^2$$
  

$$36x^2 - 48x + 16 = 32x$$
  

$$9x^2 - 20x + 4 = 0$$
  

$$x = \frac{2}{9} \text{ or } 2$$

#### **Radical Equations**

$$\sqrt{2x+5} = 2\sqrt{2x} + 1$$
  

$$(\sqrt{2x+5})^2 = (2\sqrt{2x} + 1)^2$$
  

$$2x+5 = 8x + 4\sqrt{2x} + 1$$
  

$$-6x+4 = 4\sqrt{2x}$$
  

$$(-6x+4)^2 = (4\sqrt{2x})^2$$
  

$$36x^2 - 48x + 16 = 32x$$
  

$$9x^2 - 20x + 4 = 0$$
  

$$x = \frac{2}{9} \text{ or } \times \text{ Extraneous}$$

Check

$$\sqrt{2(\frac{2}{9}) + 5} = 2\sqrt{2(\frac{2}{9})} + 1$$
$$\sqrt{\frac{49}{9}} = 2\sqrt{\frac{4}{9}} + 1$$
$$\frac{7}{3} = \frac{7}{3}$$

$$\sqrt{2(2) + 5} = 2\sqrt{2(2)} + 1$$
$$\sqrt{9} = 2\sqrt{4} + 1$$
$$3 \neq 5$$

#### **Radical Equations**

1. 
$$\sqrt{b+4} = \sqrt{b+20} - 2$$
  
 $b = 5$   
2.  $\sqrt{y+6} - \sqrt{y} = \sqrt{2}$   
 $y = 2$ 

3. 
$$\sqrt{x-5} = \sqrt{x+1}$$
  
*no solution*

### **5.4 - Solving Radical Equations and Inequalities** <sup>13 of 16</sup>

1.  $x = \sqrt[3]{x^2 - x + 1}$  x = 1

14 of 16

#### **Radical Inequalities**

 $10 \ge \sqrt{x+1} + 5 \qquad 10 \ge \sqrt[3]{x+1} + 5 \\ -1 \le x \le 24 \qquad x \le 124$ 

15 of 16

**Radical Inequalities - Practice** 

$$0 \ge \sqrt{-5x+1} - 5 \qquad -\frac{24}{5} \le x \le \frac{1}{5}$$

**Radical Inequalities - Practice** 

$$\sqrt{10} > \sqrt{(x+1)(x-2)}$$
  $-3 < x \le -1$  or  $2 \le x < 4$